微服务介绍与实践总结
近年来,微服务与DevOps等概念不断热炒。两者实际上是紧密相联,又相辅相成,Docker、Mesos、Kubernates等技术方案的快速崛起,为微服务提供了更坚实土壤,使其得以更顺利地实施落地。 类似spirng-boot等技术的发展与大为传播,更是直接促进了微服务成熟化发展。本文将从与对传统单体架构服务与微服务的比较,介绍微服务,并在最后对DevOps与微服务联系做简单介绍。
近年来,微服务与DevOps等概念不断热炒。两者实际上是紧密相联,又相辅相成,Docker、Mesos、Kubernates等技术方案的快速崛起,为微服务提供了更坚实土壤,使其得以更顺利地实施落地。 类似spirng-boot等技术的发展与大为传播,更是直接促进了微服务成熟化发展。本文将从与对传统单体架构服务与微服务的比较,介绍微服务,并在最后对DevOps与微服务联系做简单介绍。
该文是对CRF算法的介绍,介绍清晰、浅显,不对初学者设置过多的理解障碍。而且文章最后提到的学习资料,我看过部份,值得推荐。
原文链接:http://blog.echen.me/2012/01/03/introduction-to-conditional-random-fields/
想象一下,你有 Justin Bieber 一天生活中的一连串快照,你想在这些照片上面打上活动内容的标签(吃睡、睡觉、开车等)。你会怎么做?
一种方式是忽略这些快照的本质,建立一个图片分类器。举个例子,事先给定一个月的打标快照,你可能会了学到在早上6点拍的较暗的照片很可能是在睡觉,有很多明亮颜色的照片,很可以是关于跳舞,照片中有车那应该是在开车等等。
然而,忽略顺序关联,你会丢失很多信息。例如,如果你看到一张嘴张的特写照片,那它应该打标成吃饭还是唱歌呢?如果上一张 Justin Bieber 的照片中他在吃饭或者做菜,那当前这张照片很可能是他在吃饭;但如果上一张照片中 Justin Bieber 在唱歌或者跳舞,那这张很可能是在说他也在唱歌。
因此,为了提高我们打标的准确率,我们应该结合参考相近照片,这正是条件随机场(condition random field)所做的事情
诸多业务场景下,都有使用kv型式存储数据供快速查询的需求。正常的做法有使用HashMap存入内存,或者存入外部的nosql KV数据库/缓存。
此外,在工作中会发现很多算法问题,都会被转换为一种追求效率的搜索问题,高效的内嵌式kv存储就会显得更有价值。
“双一十”将近,作为一个电商应用的开发人员,也是时候操心一下自己管理服务的性能问题了。平时跑得好好的服务应用,能否承受的住双十一,尤其是午夜时刻的流量冲击?到底是要加机器还是要做服务降级?机器加多少?服务降级降多少.....为回答这一系列的问题,你首先要知道服务的极限是多少。按我们这种非专业测试人士的设想,测试方法应满足如下需求:
本文分两部份,第一部份为译:是对是对于lucene事务的一篇佳作《Transactional Lucene》的翻译。第二部份为解:是本人对一文中提到一些概念在源码层次的一些理解分析,参考lucene源码版本为4.10.4。《Transactional Lucene》中还提到了多commit在实际生产中的一些妙用,值得参考。